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Abstract

This paper is an extension of the author’s previous work that dealt with a composite rectangular
membrane with an oblique interface. In the present study, a practical method is presented for the free
vibration analysis of a composite rectangular membrane with two homogeneous regions, of which the
interface consists of two rectilinear parts and is named ‘bent interface’. To the author’s best knowledge,
the vibration analysis of the composite membrane with this configuration is attempted for the first time in
the paper. In order to extract the global system matrix of which the determinant gives natural frequencies, a
special way of individually considering the two rectilinear parts of the bent interface and extracting local
system matrices by means of applying the compatibility condition to each rectilinear part is revised. Case
studies show that the natural frequencies and mode shapes obtained by the present method agree well with
those given by exact solutions or FEM (ANSYS), even when a small number of base functions are used.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The author proposed an effective method for the free vibration analysis of a composite
rectangular membrane with two homogeneous regions, of which the interface is oblique against
any of the four edges of the membrane [1]. In the previous work, an eigensolution for each
homogeneous region was first obtained by considering fixed boundary conditions at boundary
edges except the interface. Then, the frequency equation that gives natural frequencies was
obtained from the compatibility conditions (conditions of continuity in displacement and slope)
given at the interface. It may be said that the previous method is effective to solve a composite
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membrane with a rectilinear interface in that it has simplicity in its theoretical development, unlike
the finite element method [2] and the boundary element method [3,4]. However, the method may
not be essentially extended immediately to a composite rectangular membrane with a bent
interface, which is explained in Fig. 1.
This paper introduces a practical method for obtaining the natural frequencies and mode

shapes of a composite rectangular membrane with two homogeneous regions, of which
the interface is composed of two rectilinear parts corresponding to G1 and G2 in Fig. 1. The
approximate solution of each homogeneous region for the free transverse vibration of the
membrane is assumed by linear superposition of wave-type base functions, which satisfy
the governing differential equation and some of four fixed boundary conditions given at the four
edges of the membrane. A global system matrix, of which the determinant yields the natural
frequencies, is obtained by assembling local system matrices, which are extracted by applying the
compatibility condition to each rectilinear part. Prior to considering the compatibility condition,
the displacement and slope shapes at each rectilinear interface are approximated by linearly
superposing sine series functions. In particular, the sum of the number of the series functions used
along interface G1 and that used along interface G2 is adjusted so as to be the same as the number
of the base functions used for the approximate solution. By this adjustment, the global system
matrix becomes a square matrix and, as a result, its determinant can be obtained.
The present method is simple in theoretical formulation and requires only a small amount of

numerical calculation. Thanks to this feature, the method gives accurate results (natural
frequencies and mode shapes) even when a small number of base functions are used. Although
many engineering applications have dealt with a great variety of composite membranes of simple
geometric shapes such as rectangular, circular and annular membranes [5–24], a survey of the
open literature performed by the author reveals that no previous researcher has studied composite
rectangular membranes with the bent interface considered in this paper.
Most investigators have mainly tackled the study of non-homogeneous membranes with

stepped density [6–8,12–15,18] and continuously varying density [9–11,16,17,19–22,24,25].
Especially for non-homogeneous membranes with stepped density, only a simple case that
interfaces between homogeneous regions are parallel to one of fixed edges has been dealt with.
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Fig. 1. Composite rectangular membrane with rectilinear interfaces G1 and G2 between two homogeneous regions DI

and DII:
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Unlike the previous literature with this limitation, the paper considers a non-homogeneous
rectangular membrane with two homogeneous regions of which the interface is not parallel to any
of four fixed edges.

2. Theoretical formulation

2.1. Assumption of eigensolutions

A sketch of a composite rectangular membrane with a bent interface, global co-ordinate system
ðX ;Y Þ and local co-ordinate systems ðx1; y1Þ and ðx2; y2Þ is shown in Fig. 1. The composite
rectangular membrane consists of two homogeneous regions DI and DII; of which the bent
interface is indicated by G1 and G2: In the same manner as in the author’s previous paper [1], the
approximate solutions of the two regions for the free transverse vibration are assumed by linear
superposition of wave-type base functions: i.e.,

WIðX ;Y Þ ¼
XN

m¼1

AðIÞ
m sin½kIX �sin½mpY=b�; ð1Þ

WIIðX ;Y Þ ¼
XN

n¼1

AðIIÞ
n sin½kIIða � X Þ�sin½npY=b�; ð2Þ

where kI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo=cIÞ

2 � ðmp=bÞ2
q

and kII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo=cIIÞ

2 � ðnp=bÞ2
q

; expressed by the angular
frequency o ¼ 2pf ; and the speed of wave propagation, ci ¼

ffiffiffiffiffiffiffiffiffiffi
T=ri

p
; using the tension per unit

length T and the surface density given by rI or rII: Eqs. (1) and (2) satisfy the governing
differential equation (Helmholtz equation): i.e.,

r2WI þ k2
IWI ¼ 0; r2WII þ k2

IIWII ¼ 0; ð3; 4Þ

and some of the fixed boundary conditions given at the four edges of the membrane as follows.

WIðX ¼ 0Þ ¼ WIðY ¼ 0Þ ¼ WIðY ¼ bÞ ¼ 0; ð5Þ

WIIðX ¼ aÞ ¼ WIIðY ¼ 0Þ ¼ WIIðY ¼ bÞ ¼ 0: ð6Þ

2.2. Compatibility conditions and system matrix

In order for the approximate solutions (Eqs. (1) and (2)) to become eigensolutions for the free
vibration of the composite rectangular membrane, it is required that WIðX ;Y Þ and WIIðX ;Y Þ
satisfy the compatibility conditions (the conditions of continuity in displacement and slope) at two
interfaces G1 and G2 [26,27]: i.e.,

WIjG1
¼ WIIjG1

; @WI=@n1
��
G1
¼ @WII=@n1

��
G1
; ð7; 8Þ

WIjG2
¼ WIIjG2

; @WI=@n2
��
G2
¼ @WII=@n2

��
G2
; ð9; 10Þ

where n1 and n2 represent the normal directions from G1 and G2; respectively.
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Before applying the compatibility conditions Eqs. (7)–(10) to the approximate solutions
Eqs. (1) and (2), the local co-ordinate systems ðx1; y1Þ and ðx2; y2Þ are, respectively, defined for two
interfaces G1 and G2 as shown in Fig. 1. Then, relationships between the global co-ordinate system
and the local co-ordinate systems are given by

X

Y

( )
¼

pi �qi

qi pi

" #
xi

yi

( )
þ

ai

bi

( )
; i ¼ 1 or 2; ð11Þ

where pi ¼ cos ai and qi ¼ sin ai (ai denotes the angle between the X -axis and the xi-axis as shown
in Fig. 1); ða1; b1Þ ¼ ða1; 0Þ and ða2; b2Þ ¼ ða2; bÞ; which correspond to the origins (O1 and O2) of
local co-ordinate systems ðx1; y1Þ and ðx2; y2Þ; respectively.

2.2.1. Compatibility conditions at the rectilinear interfaces (G1 and G2)
By the use of Eq. (11), the approximate solutions WIðX ;Y Þ and WIIðX ;Y Þ are expressed with

the local co-ordinate system ðxi; yiÞ; respectively: i.e.,

WIðxi; yiÞ ¼
XN

m¼1

AðIÞ
m sin½kIðpixi � qiyi þ aiÞ�sin½mpðqixi þ piyi þ biÞ=b�; ð12Þ

WIIðxi; yiÞ ¼
XN

n¼1

AðIIÞ
n sin½kIIða � pixi þ qiyi � aiÞ�sin½npðqixi þ piyi þ biÞ=b�: ð13Þ

Eqs. (7)-(10) are also expressed using the local co-ordinate system ðxi; yiÞ: i.e.,

WIðxi; yi ¼ 0Þ ¼ WIIðxi; yi ¼ 0Þ; i ¼ 1 or 2; ð14Þ

@WI=@yiðxi; yi ¼ 0Þ ¼ @WII=@yiðxi; yi ¼ 0Þ; i ¼ 1 or 2; ð15Þ

Substituting Eqs. (12) and (13) into Eqs. (14) and (15) givesXN

m¼1

AðIÞ
m sin½kIðpixi þ aiÞ�sin½mpðqixi þ biÞ=b�

¼
XN

n¼1

AðIIÞ
n sin½kIIða � pixi � aiÞ�sin½npðqixi þ biÞ=b�

i ¼ 1 or 2; ð16Þ

XN

m¼1

AðIÞ
m

q
qyi

fsin½kIðpixi þ aiÞ�sin½mpðqixi þ biÞ=b�g

¼
XN

n¼1

AðIIÞ
n

q
qyi

fsin½kIIða � pixi � aiÞ�sin½npðqixi þ biÞ=b�g

i ¼ 1 or 2: ð17Þ

In order to remove geometric variable xi involved in Eqs. (16) and (17), the sth basis sin spxi= *Li

where *Li denotes the length of segment OiPi is multiplied to both sides of Eqs. (16) and (17) and
an integration is performed along the common interface Gi of length Li: Then, Eqs. (16) and (17)
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lead to, respectively,XN

m¼1

SM ðIÞðiÞ
sm AðIÞ

m ¼
XN

n¼1

SMðIIÞðiÞ
sn AðIIÞ

n ; s ¼ 1; 2;y;Ni; i ¼ 1 or 2; ð18Þ

XN

m¼1

VM ðIÞðiÞ
sm AðIÞ

m ¼
XN

n¼1

VMðIIÞðiÞ
sn AðIIÞ

n ; s ¼ 1; 2;y;Ni; i ¼ 1 or 2; ð19Þ

where SM ðIÞðiÞ
sm ; SMðIÞðiÞ

sn ; VM ðIÞðiÞ
sm and VM ðIIÞðiÞ

sn are given by

SMðIÞðiÞ
sm ¼

Z Li

0

sin½kIðpixi þ aiÞ�sin½mpðqixi þ biÞ=b�sin½spxi= *Li� dxi; ð20Þ

SM ðIIÞðiÞ
sn ¼

Z Li

0

sin½kIIða � pixi � aiÞ�sin½npðqixi þ biÞ=b�sin½spxi= *Li� dxi; ð21Þ

VM ðIÞðiÞ
sm ¼

Z Li

0

f�qikIcos½kIðpixi þ aiÞ�sin½mpðqixi þ biÞ=b�

þ ðmp<pi=bÞsin½kIðpixi þ aiÞ�cos½mpðqixi þ biÞ=b�gsin½spxi= *Li� dxi; ð22Þ

VM ðIIÞðiÞ
sn ¼

Z Li

0

fqikII cos½kIIða � pixi � aiÞ�sin½npðqixi þ biÞ=b�

þ ðnppi=bÞsin½kIIða � pixi � aiÞ�cos½npðqixi þ biÞ=b�gsin½spxi= *Li� dxi: ð23Þ

Note that the integration procedures in Eqs. (20)–(23) are performed to eliminate the geometric
variable xi; which results from the fact that Gi is oblique against both the X -axis and the Y -axis.

2.2.2. Extraction of a global system matrix from local system matrices

For simplicity, Eqs. (18) and (19) are rewritten in the matrix forms

SMðIÞð1ÞAðIÞ ¼ SMðIIÞð1ÞAðIIÞ; VMðIÞð1ÞAðIÞ ¼ VMðIIÞð1ÞAðIIÞ; for i ¼ 1 ðat G1Þ; ð24; 25Þ

SMðIÞð2ÞAðIÞ ¼ SMðIIÞð2ÞAðIIÞ; VMðIÞð2ÞAðIÞ ¼ VMðIIÞð2ÞAðIIÞ; for i ¼ 2 ðat G2Þ; ð26; 27Þ

where the sizes of SMðDÞðiÞ and VMðDÞðiÞ for D ¼ I or II and i ¼ 1 or 2 are commonly N � Ni and
the size of AðDÞ for D ¼ I or II is N � 1: Next, Eqs. (24) and (26), related to the condition of
continuity in displacement, are assembled in the single matrix equation

SMðIÞAðIÞ ¼ SMðIIÞAðIIÞ; ð28Þ

where SMðIÞ and SMðIIÞ are

SMðIÞ ¼
SMðIÞð1Þ

SMðIÞð2Þ

" #
;SMðIIÞ ¼

SMðIIÞð1Þ

SMðIIÞð2Þ

" #
; ð29; 30Þ

and their sizes are commonly ðN1 þ N2Þ � N: Similarly, Eqs. (25) and (27), related to the
condition of continuity in slope, are assembled in the single matrix equation

VMðIÞAðIÞ ¼ VMðIIÞAðIIÞ; ð31Þ
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where VMðIÞ and VMðIIÞ are

VMðIÞ ¼
VMðIÞð1Þ

VMðIÞð2Þ

" #
; VMðIIÞ ¼

VMðIIÞð1Þ

VMðIIÞð2Þ

" #
; ð32; 33Þ

and their sizes are also commonly ðN1 þ N2Þ � N:
Finally, a global system equation of the composite rectangular membrane is obtained by

assembling Eqs. (28) and (31) into a single matrix equation as follows.

SMðf ÞA ¼ 0; ð34Þ

where the global system matrix SMðf Þ of size 2N � 2ðN1 þ N2Þ and the unknown coefficient
vector A of size 2N � 1 are, respectively, given by

SMðf Þ ¼
SMðIÞ �SMðIIÞ

VMðIÞ �VMðIIÞ

" #
;A ¼

AðIÞ

AðIIÞ

( )
: ð35; 36Þ

The natural frequencies of the composite rectangular membrane theoretically correspond to the
roots of det½SMðf Þ� ¼ 0; which is called the frequency equation in the paper. However, since
det½SMðf Þ� ¼ 0 cannot be analytically solved, values of f satisfying det½SMðf Þ�E0 are
approximately found by increasing f discretely in the range of interest.
On the other hand, N1 and N2 are adjusted so that N1 þ N2 is identical to N (as the result,

SMðf Þ becomes a square matrix and its determinant can be calculated). In this adjustment, the
reasonable manner of approaching the ratio of N1 : N2 to the length ratio of G1 : G2 is required to
obtain more accurate natural frequencies and modes. If the natural frequencies are obtained from
the frequency equation, the jth mode shape for the jth natural frequency fj can be obtained by
plotting Eqs. (1) and (2) with the jth eigenvector AðjÞ extracted from SMðfjÞA ¼ 0:

3. Case studies

To verify the method presented in this paper, the free vibration analysis of a composite
rectangular membrane, of which the configuration is given by a ¼ 1 
 8; b ¼ 1 
 0; a1 ¼ 0 
 7 and
a2 ¼ 0:8 in Fig. 1, is carried out. In the case studies, the surface density of homogeneous region DI

and the tension per unit length are, respectively, fixed as rI ¼ 1:293� 10�5 kg=m2 and T ¼
1:503 N=m; but the surface density of homogeneous region DII and the location of point QðX1;Y1Þ
related to the skew angles (a1 and a2) are varied for various numerical tests. The first ten natural
frequencies and mode shapes obtained by the present method are compared with those obtained
by exact and numerical analyses to ensure the validity of the proposed method.

3.1. Homogeneous rectangular membrane

To show an excellent convergence of the proposed method to exact solutions, a simple case of
rII ¼ rI and Qð1 
 1; 0 
 4Þ is considered in the section. For various combinations of N1 and N2;
logarithm values of det½SMðf Þ� are plotted as a function of f in Fig. 2 where the values of f
corresponding to the troughs represent the natural frequencies of the homogeneous rectangular
membrane and the cut-off frequencies of the two homogeneous regions. The cut-off frequencies,
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which are labelled by fc1; fc2 and fc3 in the figure, were in detail demonstrated in the previous paper
[1] and they coincide with the roots of kIðf Þ ¼ 0 and kIIðf Þ ¼ 0 (in the current example, kIðf Þ ¼
kIIðf Þ ¼ 0 due to rI ¼ rII). Since the cut-off frequencies are easily obtained by the simple manner
aforementioned, correct troughs corresponding to the natural frequencies can be clearly
distinguished from spurious troughs corresponding the cut-off frequencies in the determinant
curve.
In Table 1, the natural frequencies obtained by the present method are compared with the exact

solutions and the FEM results. Only a small number of series functions, in the current instance
N1 ¼ N2 ¼ 2; are enough to yield accurate natural frequencies converged to the exact solutions.
On the other hand, the natural frequencies calculated by FEM (ANSYS) approach the exact
solutions when a large number of elements are used.

3.2. Composite rectangular membranes

3.2.1. Convergence and accuracy of the proposed method

In the section, a composite rectangular membrane for the case of rII ¼ 2rI and Qð1 
 1; 0 
 4Þ is
first solved by the proposed method. In Fig. 3 are shown logarithm values of det½SMðf Þ� as a
function of f for some combinations of N1 and N2 to find the natural frequencies of the
membrane. The cut-off frequencies of two homogeneous regions DI and DII are indicated by f

ðIÞ
c1 ;

f
ðIÞ

c2 ; f
ðIIÞ

c1 ; f
ðIIÞ

c2 and f
ðIIÞ

c3 ; which correspond to the roots of kIðf Þ ¼ 0 or kIIðf Þ ¼ 0: The natural
frequencies found from the figure are summarized in Table 2 where it may be observed that the
natural frequencies by the proposed method for N1 ¼ 3 and N2 ¼ 4 a little lower than those by
FEM (ANSYS) for Nele ¼ 1133: This fact indicate that the proposed method yields accurate
natural frequencies close to exact solutions in that the FEM results gradually approach lower
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Fig. 2. Determinant of the system matrix versus frequency for the homogeneous rectangular membrane (rI ¼ rII) when
N1 and N2 are varied.
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values as the number of finite elements is increased (in general, FEM provides upper bounds for
exact solutions).
Fig. 4 shows the first ten modes obtained by the proposed method for N1 ¼ 2and N2 ¼ 3: The

mode shapes have been found to be in good agreement with those given by FEM (ANSYS). It
may be said in Fig. 4 that inhomogeneity in density results in the shifting of nodal lines in the x
direction, and that most modes have nodal lines parallel to fixed boundaries, except the 8th and
9th modes. Also, note that the shape of the bent interface is not reflected in mode shapes.
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Table 1

Comparison of the natural frequencies of the homogeneous rectangular membrane obtained by the proposed method,

the exact method, and FEM (ANSYS) when N1 and N2 are varied

Natural

frequencies

Proposed method Exact values

(mode shapes)

FEM

N1 ¼ 2; N1 ¼ 2; N1 ¼ 3; N1 ¼ 3; Nele ¼ 800 Nele ¼ 450 Nele ¼ 200 Nele ¼ 50

N2 ¼ 2 N2 ¼ 3 N2 ¼ 3 N2 ¼ 4

f1 195.01 195.01 195.01 195.01 195.01 (1,1) 195.18 195.32 195.70 197.76

f2 254.83 254.83 254.83 254.83 254.83 (2,1) 255.12 255.35 256.01 259.55

f3 331.34 331.34 331.34 331.34 331.34 (3,1) 332.07 332.64 334.28 343.15

f4 353.85 353.85 353.85 353.85 353.85 (1,2) 355.22 356.29 359.35 375.92

f5 390.02 390.02 390.02 390.02 390.02 (2,2) 391.42 392.51 395.63 412.48

f6 415.41 415.41 415.41 415.41 415.41 (4,1) 417.03 418.29 421.90 441.29

f7 443.81 443.81 443.81 443.81 443.81 (3,2) 445.47 446.77 450.46 470.30

f8 503.28 503.28 503.28 503.28 503.28 (5,1) 506.46 508.95 516.08 546.55

f9 509.66 509.66 509.66 509.66 509.66 (4,2) 512.02 513.86 519.11 554.74

f10 520.11 520.11 520.11 520.11 520.11 (1,3) 524.80 528.46 538.95 592.56
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Fig. 3. Determinant of the system matrix versus frequency for the composite rectangular membrane (rII ¼ 2rII) when
N1 and N2 are varied.
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3.2.2. Accuracy of the proposed method when the ratio of rI : rII is varied
As another verification example, the natural frequencies and mode shapes of composite

rectangular membranes with the same configuration as in Section 3.2.1 but different values in the
surface density of region DII are obtained by the proposed method. For rII ¼ rI=2; rII ¼ 3rI and
rII ¼ 4rI; the natural frequencies of the composite membranes are summarized in Table 3 where a
comparison between the proposed method and the numerical method (FEM) indicates that the
proposed method yields accurate results even when only a small number of series terms (N1 ¼ 2 and
N2 ¼ 3) are used. Although the mode shapes of the composite membranes by the proposed method
are not presented in the paper, they have been found to agree excellently with those by FEM.

3.2.3. Composite membrane with a highly oblique interface part
Finally, free vibration analysis is carried out for a composite rectangular membrane with a

particular interface shape, for which the location of point Q in Fig. 1 is moved into Qð1 
 2; 1=6Þ so
that the interface G1 more approaches the X -axis. Also in the current, particular case, the
proposed method yields the accurate natural frequencies close to the FEM results (see Fig. 5 and
Table 4). Furthermore, the mode shapes of the membrane obtained by the proposed method have
been found to be in excellent agreement with those by FEM (see Fig. 6). In the current case that a
special shape is given for the interface, it may be seen that nodal lines are not parallel to fixed
boundaries, and that this tendency becomes clearer for higher modes.

4. Conclusion

In this paper, an effective method has been presented that can be applied to the free vibration
analysis of composite rectangular membranes with a bent interface. The proposed method yields
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Table 2

Comparison of the natural frequencies of the composite rectangular membrane (rII ¼ 2rI) obtained by the proposed

method and FEM (ANSYS) when N1 and N2 are varied

Natural frequencies Proposed method FEM

N1 ¼ 2; N1 ¼ 2; N1 ¼ 3; N1 ¼ 3; Nele ¼ 1133 Nele ¼ 724 Nele ¼ 470 Nele ¼ 280

N2 ¼ 2 N2 ¼ 3 N2 ¼ 3 N2 ¼ 4

f1 156.9 156.7 156.7 156.7 (156.7) 156.9 156.9 157.0 157.1

f2 222.5 222.3 222.3 222.3 (222.3) 222.6 222.7 222.9 223.4

f3 266.4 266.3 266.1 265.9 (265.9) 266.9 267.0 267.6 268.4

f4 277.5 277.2 277.1 277.1 (277.1) 277.9 278.1 278.6 279.4

f5 329.1 329.0 328.5 327.6 (327.6) 329.5 329.8 330.7 332.2

f6 353.5 353.2 353.2 352.9 (352.9) 354.3 355.0 356.2 357.9

f7 381.5 381.6 381.6 381.6 (381.5) 382.7 383.4 384.5 387.2

f8 382.7 382.7 382.6 382.1 (382.0) 384.9 385.4 387.4 389.6

f9 421.1 420.8 420.7 420.7 (420.6) 423.0 423.9 425.9 429.1

f10 427.3 427.3 427.3 426.0 (425.9) 429.0 429.8 431.7 434.8

Note: parenthesized values denote natural frequencies obtained for N1 ¼ 5 and N2 ¼ 6:

S.W. Kang / Journal of Sound and Vibration 272 (2004) 39–53 47
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Fig. 4. Mode shapes of the composite rectangular membrane (rII ¼ 2rI) obtained by the proposed method when

N1 ¼ 2 and N2 ¼ 3:
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Table 3

Comparison of the natural frequencies of the composite rectangular membrane obtained by the proposed method and

FEM (ANSYS) when rII is varied

Natural frequencies Proposed method (N1 ¼ 2 and N2 ¼ 3) FEM (Nele ¼ 1133)

rII rII

rI=2 3rI 4rI rI=2 3rI 4rI

f1 210.2 131.4 115.0 210.4 131.6 115.2

f2 299.8 201.4 181.6 300.1 201.8 182.2

f3 371.9 219.0 190.3 373.4 219.5 190.7

f4 383.7 249.9 236.3 384.5 250.4 236.7

f5 451.2 275.6 240.7 453.6 276.0 241.0

f6 474.2 308.7 270.5 475.9 310.1 271.9

f7 534.5 317.8 283.9 537.3 319.4 285.4

f8 536.3 345.0 305.3 541.3 345.7 306.0

f9 581.0 363.4 316.7 584.7 365.0 318.1

f10 593.3 380.3 347.7 596.8 381.9 349.4

Table 4

Comparison of the natural frequencies of the particular composite rectangular membrane (rII ¼ 2rI) obtained by the

proposed method (N1 ¼ 2 and N2 ¼ 3) and the FEM (Nele ¼ 1217)

Natural frequencies f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Proposed 158.6 222.9 269.7 282.3 339.9 356.5 383.6 386.8 423.2 435.2

FEM 158.8 223.1 270.1 282.9 340.2 357.2 383.9 389.9 425.7 436.9
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Fig. 6. Mode shapes of the composite rectangular membrane (rII ¼ 2rI) with the particular interface shape when

N1 ¼ 2 and N2 ¼ 3:
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accurate natural frequencies and mode shapes compared with exact solutions or FEM (ANSYS),
in spite of only a small amount of computation effort.
It is expected that the method presented in this work can be applied to analyze composite

membranes with arbitrarily shaped interfaces by discretizing a curved interface into a great
number of rectilinear interfaces (More concrete process is explained in Appendix A).
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Appendix A

Consider a composite membrane with a multiple interface composed of n rectilinear interfaces
(G1;G2;y;Gn). If the compatibility conditions are applied to each rectilinear interface, one can
obtain 2n matrix equations:

SMðIÞðiÞAðIÞ ¼ SMðIIÞðiÞAðIIÞ; VMðIÞðiÞAðIÞ ¼ VMðIIÞðiÞAðIIÞ; for i ¼ 1; 2;y; n: ðA:1;A:2Þ

Note that Eqs. (A.1, A.2) correspond to Eqs. (24)–(27) in the composite membrane with the bent
interface. Eqs. (A.1) may be rewritten as

SMðIÞAðIÞ ¼ SMðIIÞAðIIÞ; ðA:3Þ

where SMðIÞ and SMðIIÞ are

SMðIÞ ¼

SMðIÞð1Þ

SMðIÞð2Þ

^

SMðIÞðnÞ

2
66664

3
77775;SMðIIÞ ¼

SMðIIÞð1Þ

SMðIIÞð2Þ

^

SMðIIÞðnÞ

2
66664

3
77775: ðA:4;A:5Þ

Also, Eq. (A.2) may be rewritten as

VMðIÞAðIÞ ¼ VMðIIÞAðIIÞ; ðA:6Þ

where VMðIÞ and VMðIIÞ are given by

VMðIÞ ¼

VMðIÞð1Þ

VMðIÞð2Þ

^

VMðIÞðnÞ

2
66664

3
77775;VMðIIÞ ¼

VMðIIÞð1Þ

VMðIIÞð2Þ

^

VMðIIÞðnÞ

2
66664

3
77775: ðA:7;A:8Þ

Note that Eqs. (A.3)–(A.8) corresponds to Eqs. (28)–(33), respectively. Finally, a global system
equation, which corresponds to Eq. (34), can be obtained from Eqs. (A.3)–(A.6).
Furthermore, the methodology explained in the above may be applied to a composite

membrane with arbitrarily shaped interface Garbi as shown in Fig. A1 where Garbi has been
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discretized with four rectilinear interfaces G1 � G4: Note that, if the number of rectilinear
interfaces used is increased, more accurate results can be obtained.
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